La mucoviscidose est une maladie grave affectant les fonctions digestives et pulmonaires. Elle touche en moyenne un nouveau-né sur 4 500. Si l’espérance de vie n’était que de cinq ans en 1960, elle atteint aujourd’hui approximativement 40 ans grâce aux progrès de la recherche. Cette maladie génétique est liée à la déficience d’un gène extrêmement instable, situé sur le chromosome 7 et codant pour la protéine CFTR (Cystic Fibrosis transmembrane Conductance Regulator). A ce jour, plus de 2 000 mutations de ce gène ont été identifiées ce qui complique les approches thérapeutiques.
Présente dans la membrane cellulaire de différentes muqueuses (appareil digestif, poumons…), la protéine CFTR fonctionne comme un canal permettant l’échange d’ions chlorure entre l’intérieur et l’extérieur des cellules. Lorsque la protéine est déficiente (suite à la mutation du gène codant), le canal ne fonctionne plus. Au niveau pulmonaire, le dysfonctionnement va alors induire des cycles d’infections et d’inflammations chroniques qui aboutiront à la destruction de l’épithélium pulmonaire. La personne présentera alors les symptômes de la mucoviscidose.
Depuis la découverte en 1989 du gène CFTR mis en cause dans la mucoviscidose et des mécanismes génétiques sous-jacents, les chercheurs n’ont eu de cesse de faire avancer les connaissances et de proposer des nouvelles thérapies. Néanmoins jusqu’à présent, ces dernières ne concernaient qu’une petite partie des patients avec des effets relativement faibles. En 2008, un nouveau canal chlorure est identifié : le canal Anoctamin-1 (ANO1). La protéine CFTR étant déficiente chez les patients, le canal ANO1 est dès lors imaginé comme cible thérapeutique pour rétablir l’efflux chlorure.
Dans une récente étude publiée dans Nature Communications et menée par Olivier Tabary (Unité Inserm 938 Centre de recherche Saint-Antoine), les chercheurs décrivent un mécanisme de régulation permettant de mettre en évidence l’effet inhibiteur d’un microARN (mirR-9) sur le canal ANO1. En clair, la capacité de cette nouvelle classe de régulateurs de l’expression génique à ralentir ou à faire obstacle à l'effet chlorure.
Dans un but thérapeutique, l’équipe de chercheurs a réussi, grâce à la synthèse d’une séquence d’acides nucléiques, à empêcher la fixation de miR9 sur ANO1 permettant ainsi de stopper l’inhibition du micro-ARN sur le canal chlorure et de rétablir son fonctionnement.
« Par cette technique, nous avons pu rétablir dans des lignées cellulaires, chez des souris et dans des cultures de cellules de patients atteints de mucoviscidose, les efflux chlorures, la réparation tissulaire ainsi que la clairance muco-ciliaire, qui sont des paramètres importants dans l’évolution de la maladie. Une telle stratégie permettrait de cibler à terme l’ensemble des patients quelle que soit la mutation, et de corriger des paramètres majeurs dans le développement de la physiopathologie des patients atteints de mucoviscidose. » explique Olivier Tabary.
Sources
MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology.
Sonneville F1, Ruffin M1, Coraux C2, Rousselet N1, Le Rouzic P1, Blouquit-Laye S3, Corvol H1,4, Tabary O5.
1. Centre de Recherche Saint Antoine (CRSA), INSERM, Sorbonne Universités, UPMC Univ Paris 06, F75012, Paris, France.
2. INSERM UMR-S 903, University of Reims Champagne-Ardenne, 51100, Reims, France.
3. Université de Versailles Saint Quentin en Yvelines, UFR des Sciences de la Santé, 78180, Montigny-Le-Bretonneux, France.
4. Paediatric Respiratory Department, Hôpital Trousseau, AP-HP, 75012, Paris, France.
5. Centre de Recherche Saint Antoine (CRSA), INSERM, Sorbonne Universités, UPMC Univ Paris 06, F75012, Paris, France.